
A robust "time-marching" solver for one- 
dimensional nucleating steam flows 
S. A. Skillings and R. Jackson* 
A mixed Lagrangian/Eulerian "time-marching' solver capable of predicting one- 
dimensional nucleating steam flows is described. Simple nucleation and droplet growth 
models are employed which avoid the use of variable empirical factors and which have been 
validated using existing experimental data from nozzle experiments performed in the steam 
tunnel of the Central Electricity Research Laboratories. Theoretical predictions are 
compared against experimental results encompassing all f low regimes likely to be 
encountered in a one-dimensional analysis of flow in a low pressure steam turbine. These 
include supercritical heat addition cases which display both steady and unsteady shock 
wave formation. 
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Introduction 

Techniques have recently been developed which enable the 
wetness fractions and mean droplet diameters to be measured at 
various positions within large, low pressure steam turbines used 
for electrical power generation 1. In order to gain a better 
understanding of the condensation loss processes involved, it 
was decided to attempt a theoretical prediction of these 
measurements, initially by solving the set of one-dimensional 
flow equations as an initial value problem. A computer program 
was written for this purpose using a fourth-order Runge-Kutta  
integration method, and a procedure mentioned in Ref 2 was 
employed to extrapolate across the sonic singularity. Equivalent 
one-dimensional geometries were then generated which would 
represent the principal features of the three-dimensional flow 
through a machine. However, it was discovered that droplet 
nucleation was regularly predicted to occur before or near the 
position where the flow becomes sonic, and such cases are 
extremely difficult, if not impossible, to solve using the Runge- 
Kutta program. 

It has been shown variously (eg Refs 3, 4 and 5) that 'time- 
marching' methods produce useful solvers for the analysis of 
both one- and two-dimensional condensing steam flows. This 
paper describes the predictions of a 'time-marching' algorithm 
which was subsequently written and which is able to solve for all 
flow regimes likely to be encountered in low pressure steam 
turbines. 

Nucleation and droplet growth theory 

There are numerous theories in the literature describing the 
processes of homogeneous nucleation and the subsequent 
growth of droplets in a supersaturated vapour. The choice of the 
theory to be used in the current analysis was based on the 
criteria that it should be simple, should not include any variable 
empirical factors, and should be suitably validated using 
experimental results from the relevant range of steam 
conditions. 

There has long been established a classical nucleation theory 
(eg Ref 6) which estimates the free energy of the microclusters 
produced by random kinetic collisions of vapour molecules in 
terms of the surface free energy and the chemical potential of the 
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bulk condensed phase--the so-called 'capillary approxi- 
mation'.  Despite criticisms that the surface free energy of 
molecular agglomerates cannot be equal to that of the bulk 
phase and that cluster translation and rotation have been 
neglected, classical theory has often proved as successful in 
predicting nucleation rates as have more refined models (eg Ref 
7). It predicts that the probable rate of production of 
microclusters having a radius equal to a critical radius which is 
stable at the particular thermodynamic conditions, is given by 

[ 2trn~'~ l /2 / pg'~ (4nrcrit2tr) 
Jis° = ~ - ;  ~ f f ;  exp l  3 ~ - - g ;  

where 

2tr 
rcrit = prR Tg A 

and 

It was first noted by Kantrowitz 8 that this isothermal approach 
neglects the fact that inelastic collisions will cause the energy of a 
cluster to change, and therefore it cannot be considered to have 
the same temperature as the surrounding vapour. The 
nonisothermal model was later refined by Feder et al 9, but 
despite their differing treatments of the problem the corrections 
they propose are very similar, that of Kantrowitz being given by 

J iso  
Jniso = (1 + q~) 

where 

q~=2(? - - l )  hf, (hfg _1~  
(7+I) RT , \RTg  2] 

Once stable droplets have been nucleated they proceed to grow 
in the supersaturated vapour. A growth law based on the 
macroscopic concepts of heat and mass transfer were derived 
by Gyarmathyl°;  a modified version, used by Jackson and 
Davidson 2, is given by 

t h j  = i t . t / (hg - hi) 
where 

qj = 4nrfctj(Tj- Tg) 

and 

Xg N u  o 

ct, 2rj [1 +Sc{(8n)l/2/1.5}(KnjPr)(½Nuo)] 
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The group Sc is equal to unity unless a correction suggested by 
Schrage 11 is included. This correction arises from the fact that 
when there is a net condensation occurring onto a droplet, a 
vapour bulk mass flow is induced, directed normally towards 
the droplet surface. The inclusion of this modification in the 
kinetic theory calculations results in an expression for the 
Schrage correction: 

Sc = ( 2 -  qc)/2q~ 

We define the condensation coefficient qc to be the fraction of 
molecules incident upon a droplet which can be considered as 
having condensed. Since there is no firm experimental or 
theoretical evidence as to the value this coefficient should take, it 
is assumed to be unity. 

Moore et al = 2 present results for five condensing steam nozzle 
experiments: four (A, B, C, D) with dry inlet and initial 
superheat, and a further test (E) with wet inlet. It was found 
using the Runge-Kutta program that good agreement with 
experiment could be obtained both for droplet size and pressure 
distribution using nonisothermal classical nucleation theory 
and Schrage corrected growth laws, provided the truncated 
virial equation of state proposed by Bakhtar et a113 is used to 
describe the vapour phase, ie 

p =pgRTg(l + Bpg) 

where 

B = {2.0624- (2612.04/Tg)l(~t°°a°°/trg 2 + 34"900)]} 10- 3 m 3 kg- t 

Preliminary investigations indicated that a simply coded (ie 
equal grid spacing) complete Eulerian solver was unlikely to 
efficiently provide adequate resolution over the nucleation zone 
for an accurate solution. This is because the thermal relaxation 
times associated with the very small droplets are much smaller 
than the timestep required for gas field stability. It was therefore 
decided to employ a mixed solution technique in which the gas 
and liquid phase calculations are completely decoupled and 
therefore do not use the same computational grid. The gas phase 
is treated using the Eulerian solver which generates a particular 
gas field, thus providing the information required for droplet 
nucleation. A Lagrangian style integration is used to track the 
growth of a droplet from each stable group through this gas field 
using a second-order Runge-Kutta technique; the wetness 
fraction being determined from the conservation of droplet 
number. The exchanges of mass, momentum and energy 
between the phases are then incorporated into a subsequent gas 
field Eulerian step in the form of source terms. This method is 
easy to program and avoids unnecessary refinement of the gas 
field grid. However, the decoupling of the phases must result in a 
diminished ability to predict unsteady flows, since the gas field is 
effectively fixed momentarily in a pseudo-steady state whilst the 
droplet growth integrations are performed. 

The equations governing the gas field behaviour are expressed 
in conservation form. In one dimension: 

c3U 1 t3F 
~t + ~ = s  

Govern ing  equat ions  and solut ion procedure  

The time-marching method selected was MacCormack's 
explicit and second-order method 14, a simple and popular 
algorithm of the Lax-Wendroff type which possesses several 
potentially advantageous properties. It is capable of capturing 
shock waves which will be present if the nozzle is rechoked 
thermally, and, because of the 'real time' nature of the 
calculation, it should be able to detect whether these shocks are 
stable or unsteady. Also, this method may be extended to two 
dimensions should such a solver ultimately be required. 

where U is the vector of dependent variables, F is the vector 
describing mass, momentum and energy fluxes, and the source 
term vector S represents the interphase transfer processes (and a 
geometrical correction to the momentum equation). 

The calculation then proceeds by a 'two-step' numerical 
integration which alternately uses forward and backward 
differences for the two steps: 

07+ 1 = U n _ (Fi+ t - -F3 &/(A fix) + Si 6t 

U n + l  1 n --n+ -~(u~ + u~ ~)-½(P~-P~_ ~) &/(A &)+½3~ & 

Nota t ion  

A Cross-sectional area of nozzle 
a Frozen speed of sound 
c Gas velocity 
D Drag coefficient 
d Droplet diameter 
e Specific internal energy 
F Flux vector 
h Specific enthalpy 
J Nucleation rate 
Kn Droplet knudsen number 
k Boitzmann's constant 
m Droplet mass 
& Rate of droplet growth 
Nuo Droplet nusselt number (= 2) 
n Number per unit mass 
n m Number of molecules per unit mass 
Pr Prandtl number (= 0.9) 
p Pressure 

Rate of heat transfer 
R Gas constant 
S Source term vector 
s Specific entropy 
T Temperature 
t Time 
U Dependent variable vector 
u Droplet velocity 

w Nozzle throat dimension 
x Distance down nozzle 
y Wetness fraction 
7 Isentropic exponent 

Thermal conductivity 
/~ Viscosity 
p Density 
a Surface tension 

Subscripts 
corr Correction 
crit Critical 
f Liquid 
fg Difference between gas and liquid states 
G Geometrical 
g Gas 
I Describing interphase transfer 
i Grid point 
isen Isentropic 
iso Isothermal 
j Droplet group 
niso Nonisothermal 
o Total 
s Saturation 
32 Sauter mean 

Superscripts 
n Calculation step 
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where 

U =  pc, 

pg(eg +½c z) 

[ pgcA \ 

F= { {(p-pcorr)+pgc2}A I 
\ pgcA(hg - Pcorr/Pg +½c2)] 

(°1 SG = (p/A) dA/dx 
0 

-- pg/(1  - y) Zj (njilj/hfg + Jim j) \ 
S I = - -  pg/(1 -- y) ~j {njDj + c(njclj/hfg + Jim j)} ) 

~og/(1 -y )  E~ {n/lj-  njOjuj-- (h s + ½cZ)(ni~l~/hfg +Jim j)} 

and 

S = SG-[- S I 

For a completely general solution, droplet velocities uj would be 
determined by solving the droplet momentum equations, 
although for very small droplets it is convenient to approximate 
the droplet motion. This may be done by neglecting slip between 
phases and setting uj=c or, more exactly, by neglecting the 
acceleration of relative phase velocities and taking 
u~ = c-zF(~c/dx) where ~j is the kinematic relaxation time. It 
can be shown (eg Ref 2) that introducing zero slip assumptions 
in the interphase transfer terms retains the correct sonic 
propagation properties of the two-phase medium. 

The criterion for stability of the explicit gas field solution is 
given by the Courant-Friederichs-Lewy (CFL) condition 
which restricts the computational timestep 5zt according to the 
relation 

(Ic +a[)6t/fx<<. 1 

This method should be able to predict aerodynamic shocks with 
only slight smearing; however, 'ripples' in the gas field are 
characteristically produced by algorithms of the Lax-Wendroff 
type around these shocks. In order to cope with such problems 
the concept of an explicit artificial viscosity was introduced by 
von Neumann and Richtmyer z5 in the form of a pressure 
correction term: 

dc 
Pcorr = ~ 

where, as given by Tyler~6: 

0~ = b 6x p,(Icl + a) 

and the amount of this numerical damping to be included is 
determined by the factor b. 

The flow field which is calculated by this algorithm is defined 
by the boundary conditions imposed upon it. All cases 
investigated have a subsonic inflow and a supersonic outflow: at 
the outflow boundary no intervention is required provided 
backward differences are used for both predictor and corrector 
steps, steady conditions being maintained at the inflow 
boundary• 

For  convenience a new droplet group is considered to be 
nucleated over each gas field grid spacing in the nucleation zone, 
and this resulted in up to twenty-five stable droplet groups being 
carried in the calculation. Since the computational time 
required to execute the Lagrangian sum for all the droplet 
groups is much greater than that required for the Eulerian step it 
was decided to investigate the effect of varying the relative 
frequency of the Eulerian and the Lagrangian calculations. 
Comfort et a117, who use a similar technique to investigate the 
behaviour of both low and high quality two-phase steam-water 
flow, state that in their regime it was found that a ratio of one for 
one proved optimum both for stability and calculation speed. 

However, they do not consider interphase transfer processes, and 
it was discovered that in the regime of smaller, more active, 
droplets with which we are concerned, one Lagrangian 
calculation for every ten Eulerian steps was adequate with 
respect to the above criterion and did not alter the solution for 
unsteady flows. It should be noted that the droplet source terms 
are re-evaluated after each Eulerian step, since the temperature 
gradient which drives the interphase transfer is altered as the gas 
field changes. 

S u b c r i t i c a l  h e a t  a d d i t i o n  

As steam expands through a transonic nozzle, a metastable state 
of supersaturation develops. Equilibrium is restored by 
condensation onto the tiny stable droplets formed by the 
process of homogeneous nucleation. The release of heat into the 
flow associated with condensation will cause the flow to tend 
towards a Mach number of unity. If the flow is initially 
supersonic then there exists a critical amount of heat, Qcrit, just 
sufficient to return the flow to the sonic condition. In the case 
where the heat released Q < Qcrit, the flow remains supersonic 
and often displays an increase in pressure known, somewhat 
misleadingly, as a condensation shock. The results Moore et 
a112 present for tests made on nozzles A, B, C and D are all 
examples of this subcritical heat addition. We shall refer to these 
as tests A1, B~, C1 and D~ and the wet inlet run made using 
nozzle E as test E 1. The agreement obtained with experimental 
results (and the predictions of the Runge-Kutta program) for 
these cases using the time-marching program would reveal 
whether any spurious numerical effects which may be associated 
with this time-marching algorithm have in some way affected 
the solution. It soon became clear that the positions of the onset 
of nucleation and of the subsequent condensation shock were 
affected by the degree of numerical damping included in the 
solution. Fig 1 compares the pressure distributions around the 
condensation shock produced for test B~ with different values 
for the factor b. It can be seen that the effect of numerical 
viscosity is to delay the onset of nucleation and the position of 
the condensation shock; good agreement with experiment being 
obtained using b = 0. The predicted droplet size at the position 
of measurement is found to increase from d32=0.94#m to 
d 3 2 = l . 0 2 / z m  as b increases from 0 to 0.4. Thus, with no 
explicit artificial viscosity used in the solution, the time- 
marching program reproduces almost exactly the prediction of 
the Runge-Kutta program. The agreement with experiment for 
tests A1, C~, D1 and E~ by taking b = 0is shown in Fig 2. An inlet 
wetness of 0.9 % is used in the prediction of test E~ which was 
calculated from the measured steam tunnel turbine work 
extraction. The flow is assumed to be non-nucleating, and good 
experimental agreement is obtained using an inlet mean droplet 
diameter of d32 = 1/zm as found in Ref 12. 
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Table 1 
9 

Test C2 D2 E2 o 
eJ 

Tot. press., bar 0.2474 0.2425 0.2449 = 
Tot. temp., K 347.3 340.0 346.7 == =o 

(3- 

Supercritical heat addition 

The phenomenon of supercritical heat addition occurs if the 
heat released into an initially supersonic flow Q >i ~crit, and this 
results in an aerodynamic shock forming in the flow. This shock 
wave will either be stable or unsteady, depending on the 
extent by which Q exceeds Qcrit- AS mentioned in Ref 12, 
supercritical heat addition was observed in further nozzle tests, 
particularly in those nozzles having lower expansion rates. We 
shall analyse the results from one such test made on each of the 
three nozzles with lowest expansion rates, which we shall call 
tests C2, D2 and E 2. The inlet conditions for these tests are given 
in Table 1. 

For a critical or moderate supercritical heat addition the 
shock wave formed in the nozzle remains stable, and tests C2 
and E 2 both appear to be of this type. The experience gained in 
analysing the subcritical cases indicates that, ideally, we do not 
wish to include any artificial viscosity. It was found, however, 
that for very low values of the factor b, 'ripples' developed 
upstream of the shock which interfered with the nucleation 
zone, and subsequent wetness effects became unreliable. Fig 3 
compares solutions in which different values of the factor b are 
used for test Ez. This reveals that we require a value o fb~  0.1 in 
order that a smooth pressure variation is produced around the 
shock, the predicted position of this shock being only slightly 
delayed. The agreement with experimental data is shown in Fig 
4, and we see that the droplet size prediction is extremely good. 
It is worth noting that this size is much greater than those found 
in the subcritical cases and is consequently a more accurate 
measurement. This is because the extinction droplet sizing 
technique used has improved resolution for these larger 
droplets, with a greater number of those optical wavelengths 
investigated exhibiting distinct transmission coefficients. Fig 5 
shows the comparison with the results of test C2, again taking 
b = 0.1; here the agreement with measured droplet size appears 
less good, although it should be remembered that we are dealing 
with small droplets where experimental uncertainty is greater (it 
is also possible that 'ripples' near the nozzle throat may have 
slightly affected the prediction of nucleation phenomena). 

In both cases the theoretically predicted increase in pressure 
at the shock is greater than that indicated experimentally, and 
the pressure then proceeds to decrease at a faster rate than do 
the measurements. This effect is much more pronounced in test 
E2, which has a slower expansion rate. Since these discrepancies 
are absent in the subcritical cases then they are most probably 
due to the presence of a shock wave in the flow. We know that a 
shock wave will thicken the boundary layer downstream, and 
this change in the effective duct geometry could explain the error 
in the pressure distribution 'tail'. Also, all measurements are 
made using wall tappings, and around the shock wave it is likely 
that they do not accurately represent the 'in-stream' static 
pressure, since the shock is 'smeared' at the wall because of 
boundary layer interaction. 

A factor worth consideration is that in the above solutions the 
droplet velocity was set equal to the gas velocity--an 
assumption which is usually considered to be reasonable for 
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small (submicron) droplets. However, any effect of this 
simplification will be magnified by the abrupt changes in 
velocity associated with shock waves. In order to assess the 
importance of including slip between phases in the calculation 
the approximate expression for droplet velocity given earlier 
was adopted, along with the expression for drag coefficient used 
in Ref 2. Its inclusion resulted only in a slight decrease in droplet 
size and a slight increase in the pressure downstream of the 
shock, thus demonstrating that neglecting the drag of the 
droplets on the gas phase remains a good approximation. 

Unsteady f low 

In the situation where Q>> Qcrit it is known that the flow does not 
remain stable (eg Refs 18 and 19). The heat released into the 
flow as vapour condenses onto the nucleated droplets causes a 
shock wave to develop which moves upstream towards the 
nucleation zone. (In a stable case it was found that the 
catastrophic collapse of subcooling at the shock wave defined 
the end of nucleation.) The temperature of the flow immediately 
before the condensation zone is increased by the presence of the 
shock wave, thus causing the supercooling, and hence the 
nucleation rate, to decrease. This results in less heat being 
released in the condensation zone, and consequently the shock 
begins to weaken. Also, if the nucleation occurs in the transonic 
region of the nozzle then the shock wave readily reaches the 
throat, and as it moves into the convergent section of the nozzle 
it weakens further. The change in flow conditions causes 
supersaturation to deepen and the nucleation rate to increase, 
and the ensuing release of heat in the condensation zone thus 
initiates a new cycle. 

At first sight it is unclear how a mixed calculation technique 
will behave when confronted with an unsteady flow of this type. 
The times taken for one oscillation cycle, as quoted by 
Barschdorffl s, are comparable to the time taken for a droplet to 
travel down the duct, and therefore the steady Lagrangian 
droplet calculation cannot faithfully represent the true dynamic 
behaviour. However, the 'perturbation' nature of this solver 
should certainly enable it to detect when a solution is not stable 
and provide adequate predictions for the relaxation times 
associated with information transferred via the gas phase. The 
only major inaccuracy is likely to be that the downstream gas 
field 'learns' about the changes in nucleation rate too quickly, 
probably resulting in a predicted frequency which is too high 
(Appendix). 

For test D2 the program predicted an oscillating flow, the 
nature of which is very similar to that described above. 
Nucleation of stable droplets commences several grid spacings 
before the throat and causes a shock wave to develop which 
moves upstream, reduces the nucleation rate and weakens, 
enabling renewed nucleation to cause another shock wave to 
develop. The predicted frequency of this fluctuation was 
v~300Hz,  and Fig 6 shows the state of the flow at the 
approximate times of maximum the minimum nucleation. We 
see that the predicted droplet size varied from a value much 
smaller than that measured to one much greater, corresponding 
to changes in the number of nuclei formed. The measurement of 
d32 = 0.45/~m is considerably greater than anything previously 
encountered, and a time average of the predicted droplet sizes is 
in quite close agreement with this measurement. Obviously, the 
axial mean droplet size distributions shown in Fig 6 will be very 
inaccurate, and a more realistic distribution would involve a 
combination of the two pseudo-steady states they describe. The 
result of the error in the heat released into the latter stages of the 
nozzle should not be too great, since the flow is tending towards 
a state of equilibrium. 

Another factor which is important in the analysis of an 
oscillating flow is the amount of numerical damping to be 
included. It was found that, as for the steady case, a value for b of 
0.1 was required to remove the ripples around the shock wave. 
By increasing b to 0.2 the unsteadiness was reduced to little 
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more than small fluctuations about a shock wave, the frequency 
of this oscillation being greater than that for the case where 
b=0.1;  whilst with b=0.3 the unsteadiness was completely 
removed and a perfectly stable solution produced. The question 
therefore arises as to whether the flow was unsteady or in fact 
steady. Schlieren photographs taken during this test and 
centered about tapping four show variously a shock or no 
shock; when the shock is visible it is in different positions and 
also curved in a different sense. This strongly suggests that test 
D E w a s  indeed an unsteady case. 

Conclusion 

A mixed Eulerian/Lagrangian solver has been developed which 
is capable of predicting nucleating steam flows for both sub- and 
supercritical levels of interphase heat exchange. With no added 
numerical viscosity the subcritical nozzle results of Ref 12 are 
predicted accurately, and this algorithm reproduces almost 
exactly the solution of a Runge-Kutta program using the 
same growth and nucleation theories which are purely 
phenomenologically based. The program carries up to twenty- 
five droplet groups and converges in a reasonable computer 
time (about one minute using an Amdahl 5870 processor). With 
the inclusion of a small amount of numerical viscosity to remove 
the ripples in the solution from around shock waves, this 
algorithm is able to cope with supercritical flows (convergence 
for steady cases taking approximately twice as long as for the 
subcritical cases). Although still very adequate, agreement with 
experimental pressure distributions is less good in these cases. 
This is very probably due to the interaction between the wall 
and the shock wave and subsequent boundary layer thickenings. 
This calculation method was also able to predict the occurrence 
of an unsteady flow pattern provided that only a small quantity 
of numerical damping was included, although it is uncertain 
whether this flow was modelled very accurately, particularly 
with respect to the oscillation frequency. The droplet sizes 
measured in two of the cases are much greater than those found 
in the subcritical flows, and they were accurately predicted by 
the program. 

The solver has proved robust for all regimes of nucleating 
steam flow likely to be found in a low pressure steam turbine, 
and the difficulties encountered in attempting a one- 
dimensional turbine analysis using a Runge-Kutta program 
should no longer be a problem. 

Acknowledgements 

The contribution of one of the authors, Mr S. A. Skillings, was 
undertaken as part of a CNAA postgraduate research project at 

Vol 8, No 2, June 1987 143 



A robust "time-marching" solver for one-dimensional nucleating steam flows: S. A. Skillings and R. Jackson 

CERL,  and he would like to acknowledge the helpful 
discussions with his supervisors Dr  M. J. Moore  at C E R L  and 
Dr  F. Bakhtar at Birmingham University. This paper is 
published by kind permission of the Central  Electricity 
Generating Board. 

References 
1 Waiters, P. T. Wetness and efficiency measurements in LP 

turbines with an optical probe as an aid to improving 
performance. ASME/IEEE Power Generation Conference, 
Milwaukee, Wisconsin, 1985 

2 Jackson, R. and Davidson, B. J. An equation set for non- 
equilibrium two phase flow, and an analysis of some aspects of 
choking, acoustic propagation, and losses in low pressure wet 
steam. Int. J. Multiphase Flow, 1983, 9(5), 491-510 

3 Snoeck, J. Calculation of mixed flows with condensation in o n e  
dimensional nozzles. In Aero-Thermodynamics of steam 
turbines, ASME H00203, 11-18, 1981 

4 Bakhtar, F. and Mohamadi Tochai, M. T. An investigation of 
two-dimensional flows of nucleating and wet steam by the time- 
marching method. Int. J. Heat and Fluid Flow, 1980, 2(1), 5-19 

5 Moheban, M. and Young, J. B. A time-marching method for the 
calculation of blade-to-blade non-equilibrium wet-steam flows in 
turbine cascades. Inst. Mech. Eng., Conference Publications, 
Computational Methods for Turbomachinery, Paper C76/84, 
Birmingham, 1984 

6 Frenkel, J. Kinetic Theory of Liquids, Dover, New York, 1955 
7 Sharaf, M. A. and Dobbins, R. A. A comparison of measured 

nucleation rates with the predictions of several theories of 
homogeneous nucleation, Brown University Providence, R. I., 
NSF CPE 79-26764/1, 1982 

8 Kantrowitz, A. Nucleation in very rapid vapour expansions. J. 
Chem. Phys., 1951, 19(9), 1097-1100 

9 Feder, J., Russell, K. C., Lothe, J. and Pound, G. M. 
Homogeneous nucleation and growth of droplets in vapours. 
Adv. in Phys., 1966, 15, 111-178 
Gyarmathy, G. Z. An#. Math. Phys. 1963, 14(3), 280-293 (In 
German) 
Schrage, R. W. A Theoretical Study of lnterphase Mass Transfer, 
CUP, New York, 1953 
Moore, M. J., Waiters, P. T., Crane, R. I. and Davidson, B. J. 
Predicting the fog-drop size in wet-steam turbines. Inst. Mech. 
Engnrs., Wet Steam 4 Conference, Paper C37/73, 1973 
Bakhtar, F., Ryley, D. J., Tubman, K. A. and Young, J. B. 
Nucleation studies in flowing high pressure steam. Proc. Inst. 
Mech. Engrs, 1975, 189(41/75), 427~,36 

10 

11 

12 

13 

14 MacCormack, R. W. The effect of viscosity in hyperveiocity 
impact cratering, AIAA Paper No 69-354, 1969 

15 Von Neumann, J. and Richtmyer, R. D. A method for the 
numerical calculation of hydrodynamic shocks. J. Appl. Phys., 
1950, 21,232-257 

16 Tyler, L. D. and Ellis, M. A. The TSKOK code: Lax version, SC- 
TM-70-153 Sandia Labs., Albuquerque, New Mexico, 1970 

17 Comfort III, W. J., Alger, T. W., Giedt, W. H. and Crowe, C. T. 
Calculation of two-phase dispersed droplet-in-vapor f lows  
including normal shock waves. Tram. ASME (J. Fluids. Eng.), 
1979, 100(3), 355-362 

18 Barschdorff, D. Droplet formation, influence of shock waves and 
instationary flow patterns by condensation phenomena at 
supersonic speeds. 3rd. Int. Conf. on Rain Erosion and 
Associated Phenomena, Farnborough, 1970 

19 Wegener, P. P. and Mosnier, F. Periodic transonic flow with 
heat addition: new results. J. Combust. Sci. and Technol., 1981, 
24, 179-189 

Appendix 

Wegener and Mosnier 19 describe an approximate method for 
determining the frequency of an oscillation. Let Ax be the 
distance between the nucleation zone and the condensation 
zone. The shock wave generated moves upstream with velocity 
vs, causing a temperature increase which 'quenches'  nucleation 
after a time 31 =Ax(vs -ck )  where c k is the flow velocity at the 
onset of condensation. After a further time 32 = A x / ( c k -  c2) the 
nuclei stop arriving and the heat addition ceases, c2 being the 
changed flow velocity imposed by the shock. This change in heat 
addition causes expansion waves to be generated which travel 
upstream at the local speed of sound, a, causing the temperature 
in the nucleation zone to drop at a time 3 a = A x / { a - ( c  k - c 2 )  } 
later. The newly generated nuclei are then able to release heat 
again after a further time z 4 = Ax/c k. Consequently, we have a 
cycle frequency v~, 1/(z I + z  2 + z  3 +34). 

Using this breakdown of the oscillation mechanism it is easy 
t o  s e e  where the mixed calculation method becomes inaccurate. 
There is no clear reason that the program will not  be able to 
predict reasonable values for the time intervals 3~ and r 3. 
However,  due to the fact that gas field 'real'  t ime is made to 
stand still whilst droplets propagate down the duct, then the 
time intervals 32 and z 4 are effectively reduced to zero. Thus it is 
likely that the mixed calculation technique would produce an 
oscillation frequency more accurately approximated by 
v~  1/(zl +33). 

Book review 
Computat ional  Methods in 
Viscous Flow III 
Ed. W. G. Habashi 

This book is a collection of articles by several leading experts in 
computat ional  fluid dynamics and covers a broad range of 
topics in numerical methods in viscous flows. As designed by the 
editor, the various authors have written articles on topics that 
have been the centre of their own research. Most  of the articles 
are short, typically 50 pages or so long and describe the author 's  
experiences in perspective with related works of others. I would 
like to congratulate the editor for assembling such a 
distinguished set of researchers and organizing their reviews in a 
coherent style. The articles are well written and reasonably 
extensive. Upon reading the book, my impression was that the 
book serves a useful purpose of providing information to many 
secors of readers in various disciplines of industry and 
academia. The articles in the book are very interesting and cover 
topics such as parabolized NS equations, multigrids, hermitian 
methods, finite elements, shock/boundary layer interactions, 
turbulent flows with solid/fluid interactions, etc. 

While the book is of much practical use, it is necessary to 
point out  that it does not  give enough details on any one method 
to the extent that a user can start programming and adapting 
the method to his problem. Because of this, the user can only 
note the theory and should then either refer to the bibliography 
or  construct his own steps in the procedure, both of which are 
cumbersome and can be frustrating. Personally, I would have 
liked to see a volume with complete details but with less number 
of articles, similar to a collection of a few monographs in o n e  

book. Such a book will be unique in style as well as content and 
will differ from traditional review articles. Perhaps the editors 
may consider this for future publications. In spite of this, I 
recommend this book for practicing C F D  researchers and 
engineers. 
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